Pointwise Convergence of Wavelet Expansions
نویسندگان
چکیده
منابع مشابه
Pointwise Convergence of a Class of Non-orthogonal Wavelet Expansions
Non-orthogonal wavelet expansions associated with a class of mother wavelets is considered. This class of wavelets comprises mother wavelets that are not necessarily integrable over the whole real line, such as Shannon’s wavelet. The pointwise convergence of these wavelet expansions is investigated. It is shown that, unlike other wavelet expansions, the ones under consideration do not necessari...
متن کاملOn Bayesian wavelet estimators: Global and Pointwise convergence
Various Bayesian wavelet estimators have been proposed recently in literature. Following Bayesian approach, a prior distribution is imposed on wavelet coefficients of the unknown response function and a Bayesian estimator is obtained then by applying a suitable Bayesian rule to the resulting posterior distribution of the coefficients. Numerous simulations studies demonstrate the good performanc...
متن کاملOn the unconditional convergence of wavelet expansions for continuous functions
In this paper, we study the unconditional convergence of wavelet expansions with Lipschitz wavelets. Especially with the Strömberg wavelet, we shall construct a counter example which shows that uniformly convergent wavelet expansions even for continuous functions do not always converge unconditionally in L∞(R). KeywordsUnconditional Convergence, Wavelet Expansion, Strömberg Wavelet. AMS Mathema...
متن کاملPointwise Convergence of Trigonometric Series
We establish two results in the pointwise convergence problem of a trigonometric series [An] £ cne inl with lim Hm £ I bTck | = 0 |n|< -x. * Jn-»oo \k\-n for some nonnegative integer m. These results not only generalize Hardy's theorem, the Jordan test theorem and Fatou's theorem, but also complement the results on pointwise convergence of those Fourier series associated with known 1}-convergen...
متن کاملPointwise convergence of Fourier series
In the early 19 century, J. Fourier was an impassioned advocate of the use of such sums, of course writing sines and cosines rather than complex exponentials. Euler, the Bernouillis, and others had used such sums in similar fashions and for similar ends, but Fourier made a claim extravagant for the time, namely that all functions could be expressed in such terms. Unfortunately, in those days th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1994
ISSN: 0273-0979
DOI: 10.1090/s0273-0979-1994-00490-2